Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Annals of Laboratory Medicine ; : 246-249, 2015.
Article in English | WPRIM | ID: wpr-29322

ABSTRACT

Emerging resistance to trimethoprim/sulfamethoxazole (SXT) poses a serious threat to the treatment of Stenotrophomonas maltophilia infections. We determined the prevalence and molecular characteristics of acquired SXT resistance in recent clinical S. maltophilia isolates obtained from Korea. A total of 252 clinical isolates of S. maltophilia were collected from 10 university hospitals in Korea between 2009 and 2010. Antimicrobial susceptibility was determined by using the CLSI agar dilution method. The sul1, sul2, and sul3 genes, integrons, insertion sequence common region (ISCR) elements, and dfrA genes were detected using PCR. The presence of the sul1 gene and integrons was confirmed through sequence analysis. Among the 32 SXT-resistant isolates, sul1 was detected in 23 isolates (72%), all of which demonstrated high-level resistance (> or =64 mg/L) to SXT. The sul1 gene (varying in size and structure) was linked to class 1 integrons in 15 of the 23 isolates (65%) harboring this gene. None of the SXT-susceptible isolates or the SXT-resistant isolates with a minimum inhibitory concentration of 4 and 8 mg/L were positive for sul1. Moreover, the sul2, sul3, and dfrA genes or the ISCR elements were not detected. The sul1 gene may play an important role in the high-level SXT resistance observed in S. maltophilia.


Subject(s)
Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Gram-Negative Bacterial Infections/microbiology , Integrons/genetics , Microbial Sensitivity Tests , Stenotrophomonas maltophilia/drug effects , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology
2.
Annals of Laboratory Medicine ; : 359-361, 2012.
Article in English | WPRIM | ID: wpr-125850

ABSTRACT

In recent years, there have been increasing reports of KPC-producing Klebsiella pneumoniae in Korea. The modified Hodge test can be used as a phenotypic screening test for class A carbapenamase (CAC)-producing clinical isolates; however, it does not distinguish between carbapenemase types. The confirmation of type of CAC is important to ensure optimal therapy and to prevent transmission. This study applied a novel multiplex PCR assay to detect and differentiate CAC genes in a single reaction. Four primer pairs were designed to amplify fragments encoding 4 CAC families (SME, IMI/NMC-A, KPC, and GES). The multiplex PCR detected all genes tested for 4 CAC families that could be differentiated by fragment size according to gene type. This multiplex PCR offers a simple and useful approach for detecting and distinguishing CAC genes in carbapenem-resistant strains that are metallo-beta-lactamase nonproducers.


Subject(s)
Humans , Bacterial Proteins/genetics , DNA Primers/metabolism , Databases, Genetic , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Multiplex Polymerase Chain Reaction , beta-Lactamases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL